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Abstract—A mathematical model has been developed to describe the mechanism of normal
perforation of projectiles in metallic targets. The perforation process is considered to be divided
into three interconnected stages. The analysis accounts for an effective mass of the bullet due
to part of the target material moving with the bullet, the deformation of the bullet during
penetration, and the increased strength of the target material at high rates of loading. The
analysis enables the residual velocity to be calculated as a function of the target thickness and its
mechanical and physical properties, and of the mass, geometry and impact velocity of the
projectile. The geometry of the cavity, i.e. entrance and exit diameters and plug thicknesses, are
factors in the analysis and are empirical quantities. The present theory can also predict the
force—time curve and the contact time for the perforation process.

NOTATION

A projection of nose of projectile on the target plate

Ay cross-sectional area of the cavity in the first stage

A, cross-sectional area of the cavity in the second stage

4, cylindrical surface area of plug

b plug length

Dy diameter of the cavity in the first stage of the perforation process (considered equal to en-
trance diameter)

D, diameter of the cavity in the second stage of the perforation process {(diameter of plug)

Dy exit diameter

e radial width of shear zone of the target plate

F resultant force on effective mass of projectile

F; inertial force

F. compressive force

F, shearing force

F,, F,, F3 total forces acting on the combined projectile and effective added mass during the different
stages of the perforation process

Fiz, Fea, Fs»  inertial, compressive and shearing forces acting on the projectile during the second stage

h thickness of target plate

K numerical constant depending on the shape of the projectile nose

m instantaneous mass of projectile

mo original mass of projectile

my projectile’s mass at the end of the first stage

ms projectile’s mass at the end of the second stage

T The research reported in this paper has been sponsored in part by the Air Force Office of Scientific
Research (AFSC) through the European Office of Aerospace Research, EOAR, United States Air Force

time

under Contract F 44620-72-C-0004.
1 Lecturer.
§ Professor.

671



672 J. AWERBUCH and S. R. BODNER

ti,t2, 13 duration times for the different stages of perforation

Iy total time for the perforation process

V instantaneous velocity

vV, impact velocity

Vy final velocity

Vi, V2, Vs projectile’s velocity during the different stages of the perforation process
v, velocity at end of second stage

Vs velocity at end of third stage, equal to ¥
x penetration depth of the projectile and effective added mass
o semi apex of conical nose of projectile
Vs dynamic ultimate shear strain
v shear strain rate
P density of target material
© coefficient of viscosity for shearing deformation

O dynamic ultimate compressive stress

T dynamic ultimate shear stress

¢ displacement of combined projectile and plug during third stage.

INTRODUCTION

Perforation of a target plate due to the impact of a projectile may occur by a number of
mechanisms such as petal formation (or dishing), ductile hole enlargement, plug formation,
and the fragmentation (scabbing) of the target material (as shown schematically by Gold-
smith [1]). Various theories have been proposed to explain the resistance of metallic plates
to projectile penetration. Due to the complexity of the problem, the suggested analytical
models are generally simplified by some basic assumptions and approximations.

The two main approaches that have been used to analyze this problem are those of energy
balance and of conservation of momentum, The energy balance method was applied by
Taylor [2] who studied the enlargement of a circular hole by a conical head projectile per-
forating a thin plate and derived an expression for the total work required for plastic-
deformation. Thomson [3], also using the energy method, derived equations for the energy
dissipation due to plastic deformation, heating, and inertial resistance of the target material.
A similar approach was proposed by Brown [4] to evaluate the energy dissipated during the
process of bullet containment in thin plates.

A different approach for the case of perforation of thin plates was proposed by Zaid
and Paul [5, 6]. Their method is based on momentum balance for the target-projectile
system which requires that the terminal shape of the perforated plate be specified. A similar
procedure was used by Nishiwaki [7] who proposed a theory for the perforation of thick
plates based upon data derived from static tests.

Investigations on plug formation during perforation were made, among others, by Recht
and Ipson [8] who dealt with the case of high velocity impact.-Recht and Ipson [8] developed
an energy analysis for the case of the plug mode of failure from which the residual velocity
could be calculated provided the minimum perforation velocity is known.

Most proposed analyses are restricted to the case of high velocity impact in order to
justify a number of assumptions such as a constant velocity during the perforation of thin
plates, the absence of plastic deformation beyond the immediate zone surrounding the hole,
and a constant pressure on the projectile. These analyses are also restricted to the case for
which the projectile is not deformed during the perforation process and are generally based
upon only one of the possible mechanisms of perforation. Actual perforation of a target
plate, however, may occur by a combination of two or more mechanisms. For example, the
thickness of the sheared plug is generally smaller than the target thickness and the plugging
process commences only after the projectile is embedded some distance in the target plate.
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For this reason an approach based on a single deformation mechanism would not be appli-
cable for the case of projectile impact at ordnance velocities. In fact, the residual velocities
derived from those theories based on a single mechanism are generally higher than the experi-
mental results, e.g. {9].

The present investigation is an analysis of the perforation process considering various
deformation mechanisms to be acting at different stages of the process. In this manner the
various types of deformations could be considered in an overall manner and the analysis
would be more representative of the actual circumstances. A preliminary study of this
nature was performed by Awerbuch [10] and expanded upon by Goldsmith and Finnigan
[11]. The present paper is a further development of those investigations and resolves a
number of limitations. The perforation process is considered to consist of three inter-
connected stages. The present analysis enables fairly accurate predictions of post perforation
velocities, contact times, and force-time histories. The analysis still relies on a few empirical
quantities which can be determined from a small number of tests. Once these are deter-
mined for a given projectile and target material, predictions can be obtained over a wide
range of projectile velocities and target thicknesses.

PRELIMINARY DISCUSSION

A relatively simple model to describe the mechanism of penetration and perforation of
projectiles in metallic plates was presented in an earlier paper [10]. In that formulation, the
perforation process was divided into two stages. The first was the compressive stage in
which the forces acting on the projectile were an inertial force and a compressive force,
and the second stage was that of plug formation and ejection.

The inertial force in the first stage is due to the acceleration of the mass of the target
material in contact with the projectile in the direction of motion. The expression for this
force component is obtained by equating the work done by the inertial force acting on the
projectile to the change of kinetic energy of the displaced target material. The compressive
force also acting on the projectile is due to the compressive strength of the target material
in contact with the projectile. Another basic assumption for this stage is that mass from the
target material is added to the projectile during the penetration process.

The second and final stage, according to the preliminary analysis, starts when the ejected
plug is set into motion as a rigid body. In this stage, the inertial force and the compressive
force do not act on the projectile and the mass of the projectile does not change. The only
force, therefore, during this stage is that due to the shearing of the ejected plug from the
target plate which was assumed to be constant.

Final velocities of projectiles computed according to this preliminary model were compared
to experimental final velocities and reasonably good agreement was obtained when the
mechanical strength properties were raised in an arbitrary manner to account for the high
rate of straining. The comparison was carried out for the case of 0-22 in. caliber lead bullet
having a muzzle velocity of 400 m/sec and target plates of commercially pure aluminum,
aluminum alloy, and mild steel of 1-6 mm thickness.

The results of an extensive series of ballistic experiments have been reported by Goldsmith
and Finnigan [11]. Hard steel spheres of 0-125-0-5 in. dia impacted and perforated 0-05-0-25
in. thick 2024 aluminum and SAE 1020 and 4130 steel alloy plates at impact velocities of
500-8800 ft/sec. Comparisons were made of the experimental final velocities to those
calculated on the basis of the preliminary model [10] and to a slightly modified form
of it developed in [11]. The principal modification was that the shearing force in the second
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stage of the perforation process was taken to be proportional to the length of the plug
still in contact with the target plate rather than a constant. Comparison of the final velocity
obtained with this modification to that obtained experimentally showed slightly better
agreement.

The experimental results of [11] and those of an extensive experimental program recently
conducted [15] have indicated that the preliminary model developed in [10] is incomplete
on some important points. These are:

(1) The final velocities of projectile computed from the model are not in good agreement
with experimental final velocities for the cases of high velocity projectiles and for perfora-
tion of thick plates.

(2) The preliminary model does not predict an important experimental observation,
namely, that the difference between the initial and final velocities decreases for initial veloci-
ties slightly greater than the ballistic limit.

(3) The force-time curve obtained from this model is not fully realistic.

In order to overcome these limitations of the preliminary model, a more detailed analysis
has been developed in which the perforation process was considered to consist of three
separate but interconnected stages. The observations and results of an extensive experimental
program served to motivate certain assumptions of the analysis. Those experimental results
and comparisons with predictions based on the present analysis are presented in an associa-
ted paper [15].

ANALYSIS

One principal mechanism of the plate perforation process is plug formation and ejection
When the thickness of the sheared plug, b, is equal to zero, there is no punching and the
mechanism of failure is considered to be the ductile type. When the plug’s thickness is equal
to the thickness of the target plate, 4, perforation is completely by plug formation. However,
the mechanism of perforation is usually a combination of the two processes with a transi-
tion stage between them, The ratio of the plug to plate thicknesses b/h depends primarily
on the mechanical and physical properties of the projectile and target materials.

In the first stage of penetration, Fig. la, shearing does not occur so this stage is identical
to that described in the preliminary analysis [10]. The only forces acting on the projectile
are the inertial force and the compressive force.

The second stage of penetration, Fig. 1b, is the onset of shearing of a plug from the
target plate. In this stage of incipient plugging, three forces are considered to act on the
projectile: an inertial force and a compressive force (as formulated in the first stage), and a
shearing force. The shearing force is due to the motion relative to the target plate of target
material which is accelerated by the projectile during this stage. The change of the effective
mass of the projectile, due to the addition of target material moving with it, is considered
in this stage as well as in the first stage. This stage ends when the plug is completely joined
to the projectile and both are moving at the same velocity, Fig. lc.

The third stage, Fig. 1d, starts when the ejected plug and the projectile are moving to-
gether as a rigid body. The only force during this stage is the shearing force which acts on
the plug’s circumference and along its whole length. The viscous nature of this shearing
force at high rates of straining is considered.

Since the time of contact between the projectile and the target is very short (the time
duration is about 10-30 usec for the case of a 0-22 in. caliber lead bullet moving at a velocity
of 400 m/sec), the heat generated at the projectile-target plate interface does not dissipate.
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Fig. 1. Schematics of the stages of the perforation process.

A very thin film of liquid is produced between the projectile and the target plate. The coeffi-

cient of friction between the two bodies is therefore very small so the frictional forces can

be neglected. This conclusion has been made by Krafft [12] and by other investigators.
The equation of motion for the perforation process in the direction of motion is

S vy~ ~F 1)

where F is the resultant force acting on the projectile, m is the instantaneous mass of the
projectile, and ¥ is the instantaneous velocity of the projectile in the medium.

In general, the force F is the resultant of three main components; F; the inertial force of
the target material, F, the compressive force, and F; the shearing force. Therefore,

d%(mV): —(F,+F,+F). (2)

The particle velocity due to elastic stress wave propagation in the target is neglected in
this analysis. This particle velocity, for example, would be of the order of 1 m/sec for a 0-22
in. caliber lead bullet moving at a velocity of 400 m/sec, e.g. Davies [13]. The effect of the
propagation of the plastic stress wave is also neglected since it can be assumed that its
velocity would be smaller than the velocity of the projectile for most target materials.

The projectile therefore transmits kinetic energy only to the mass it displaces. It is assumed
that the element of mass of the target material in contact with the projectile is set into motion
while the remainder of the target material remains at rest. Each mass element is considered
to move normal to the surface of the nose of the projectile. This is possible on the basis that
the target material is compressible.

Another related assumption is that the effective mass of the projectile increases during the
penetration process due to addition of the target material displaced in the direction of
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motion. Part of the kinetic energy imparted to the added mass by the projectile remains
stored in the combined effective mass of the projectile while the remainder is converted to
plastic deformation and heat.

In the first stage of the penetration process, only the inertial and compressive forces are
considered to act on the projectile. The inertial force is not distributed uniformly on the
projectile’s nose surface but depends on the shape of the nose. Equating the work done by
the reaction of the inertial force on the target material to the change of the kinetic energy
of the displaced material (neglecting the work done in changing the volume of a mass
element due to its compressibility) leads to

dF,, dx, = dmV,? (3)

where dF,, is the normal inertial force acting on an element area d4, of the projectile, dx,
is the displacement of a mass element of the target material normal to the projectile surface,
and V, is the velocity of a mass element in a direction normal to the projectile surface.

According to the above assumptions, the mass element dm of the target material of
density p which is displaced by the projectile as it advances dx, would be

dm = p dx, dA4,. (4)
Substituting equation (4) into equation (3) leads to
dF,, = 3p(dA,)V,2. )

F; can be determined for each projectile’s shape by integrating the component of dF;, in
the direction of motion over the surface of the projectile.
As an example, for a cylindrical projectile with a flat end:

n

Vv, =V, LdF,.,, = F,, and LdA,, =4
so that
F;=1pAV?2. (6)
If the geometry of the projectile’s nose is more complicated, then:
F;=1KpAV? (7)

where K is 2 numerical constant depending on the geometry. Values of K obtained by in-
tegration for some typical geometries are given in Table 1:

Table 1. Shape factor

Nose shape K
Flat 1
Sphere 3
Cone (semi apex angle &) sin? o

The compressive force is distributed uniformly in the direction of motion on the pro-
jectile’s nose surface, and can be expressed as F, = 0. 4. A is the projected area of the pro-
jectile’s nose on the target plate and o, is the ultimate compressive strength of the target
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plate at the applied straining rate. The equation of motion for the first stage, equation (2),
could therefore be written as follows:
1

%(mV):Vflci—r:l+de?=Fl=—EKpAlVZ—ocAI (8)
where the projected area A, includes the effect of possible flattening of the projectile’s nose.
A, is taken to be constant during stage 1 and is measured by the entrance opening. In the
actual physical process, 4, would be a function of x since the projectile deforms with pene-
tration distance. This effect can be considered in an overall average manner to within the
level of accuracy of this analysis.

The inertial force F; and compressive force F, are considered to act on the effective mass
of the projectile which includes the target material displaced by the projectile and moving
with it (Fig. 1a). The problem of physically locating the added mass-with respect to the pro-
jectile is not readily resolved since compressibility effects would have a large influence.
However, this determination is not required for the purpose of the present analysis. It is
important to note that the measure of the penetration depth of the projectile, x, is that of
the combined mass and not that of the original projectile by itself. That is, the value of x is
the distance from the initial impact surface to the front of the target material that is moving
at the projectile velocity (Fig. 1a). The effective mass of the combined projectile for use in
the equation of motion is therefore m, + pA4,x where m, is the original mass of the pro-

Jectile.
The rate of change of the effective mass of the projectile would be
dm dx
= pA, —= .
dt pA,y dr pAY 9)

Substituting equation (9) and the relation

dv dvdx _dv
dt  dxdtr dx

into equation (8) leads to:

dav 1
pA V? + (mg + pAlx)Va—x— =-3 KpA,V? — g, A,. (10)
Equation (10) can be solved by separation of variables to give
2+K 1/2
VI(X)={|:V12 + O ]( mO/pAl ) _ Gc } (ll)
p(1 + 0-5K)] \mg/pA, + x p(1 + 0-5K)

where V,(x) is the velocity of the combined projectile and added mass.
The time for the combined projectile to penetrate a distance x can be calculated by
numerical integration of the expression

1 x o molpA 2+K - -1/2
= dx = V2 < orF _ e
' fo Vi(x) x fo {[ o p(1 + 0'5K)] (mo/pA1 + x) o(l + O'SK)} dx. (12)

The force-time curve for the first stage of penetration can be obtained from equations
(8, 11 and 12). The first stage ends when x = & — b (t = ;) and the process of shearing starts.
The value of the plug thickness b, which is an essential factor for the determination of the
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various quantities at the end of the first stage, can only be obtained empirically at the
present state of development of the analysis. It is shown in [15] that the ratio b/h is ess-
entially constant for a given projectile and target material within the range of ordnance
velocities.

In the second stage of incipient plugging, the inertial force continues to act on the pro-
jectile and can be expressed as

Fiy =3KpA, V2

where A, is the cross-sectional area of the cavity in the second stage. This area can, in
general, be considered a function of x, A, = 4,(x), in the force expressions and in the equa-
tions of motion. The experimental results indicate that for most cases 4, is close to 4; so
that the complete cavity can be considered to be cylindrical. Insome cases there is appreciable
enlargement, i.e. the exit diameter is much larger than the entrance diameter. The diameter
can then be considered to vary linearly with x from D, at x =h — b to D, at x = A to give
a quadratic function for A,(x). The following development of the equations of motion
will be restricted to constant 4, . In the subsequent comparisons with experiments, [13], 4,
and A4, were taken to be equal and the average of the entering and exit areas. Check studies
taking 4, = 4,(x) and 4, = A,(x) showed little difference in the final results.

The shape constant K in the inertial force expression was set equal to 0-5 for the second
stage since for standard ordnance projectiles (not armour piercing) the projectile’s nose
deforms and tends toward a spherical shape. This result can be seen from ballistic photo-
graphs as well as from the geometry of the ejected plugs and the deformed projectiles. This
change of K would imply an artificial discontinuity in the force. In practice, the discon-
tinuity is very small and not observed unless the time increments in the computational
procedure are taken to be very small.

The compressive force also acts during the second stage of penetration and its initial
value would be F, = 6.4,. The second stage ends when the mass element at the rear side
of the target plate moves at the same velocity of the combined projectile and effective added
mass, i.e. x = h, the plate thickness. At that time the entire target material forward of the
projectile moves together with it at the same velocity. The force F, therefore becomes zero
at the end of the second stage. A parabolic function for F,,(x) that meets the limiting con-
ditions has been used in the analysis.

x—(h—5)

2
PN i ST R >

The alternative choices of linear functions or similar forms that represent the limiting
conditions were found to have small effect on the calculated residual velocities. It is interest-
ing to note that equation (13) does lead to force-time curves which are very similar to those
obtained in the case of dynamic punching, e.g. Dowling, Harding and Campbell [14].

The second stage of penetration is also characterized by a shearing force. This acts along
the surface of that part of the plug which is moving together with the projectile, i.e. along
the surface nD,[x — (h — b)] where D, is the diameter of the cavity in the second stage.
The shear force is then given by

Fa(x)=tnDy[x —(h—b)] h—b<x<h (14)
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The shear strength of metals 7 has been found to have a viscous dependence on strain rate
at very high rates of straining, e.g. [16, 17]. The shear strength can be taken to be in the
Bingham form

T =17q+ (15)

where p is the coefficient of viscosity and y is the shear strain rate. The latter can be taken as
V/e where e is the radial transition distance between the plug and the undeformed target
material, i.e. the width of the shear zone. The quantity e is referred to as the *“‘radial clear-
ance” in dynamic punching problems and it is essentially a property only of the target
material at high rates of deformation and can be readily obtained experimentally. Analytical
expressions for e can be deduced from the results given in [18 and 19].

The equation of motion for the second stage is the same as that derived for the earlier
one with the change in the expression for the compressive force (13) and the addition of the
shearing force (14, 15). The equation then becomes, for the case of constant D, and 4,

d 1 29 — (h— b)]?
oM =Fa= - Kpd, V2 —(zo+u?) nDz{x—(k—b)]—-acAz{l - F-w%)_—)] }

(16)

where A — b < x < h. Substituting equation (9) into equation (16) leads to

dI(’;)(CX) _ [——(l +05K)pA, V2 ~ 1onDyx — unD, Vx4 un})zih — b) ,
— — 2
FronPm - GCAZ{I B P"%_b)] ”/[(’”0 +pd, V] (A7)

and m; = my + pA,(h — b) is the effective mass at the end of the first stage.
The time ¢ for the combined projectile and added mass to reach the rear surface of the
target plate, 1.e. x = h, is calculated by numerical integration of

X=h 1
t, = LH  dx. (18)
¥V can be calculated numerically by a computer subroutine from equation (17). The force-
time curve can be obtained from equations (16-18).

The third stage commences when the entire section of target material forward of the
projectile moves together with it as a rigid body. The effective mass is then m, = m, + pAh
where A is the average cross-sectional area of the entire cavity. During stage 3 the only
active force is that due to the shear stresses acting over the surface of the plug. These shearing
stresses are considered to act in a shear zone of depth e around the plug. The displacement,
¢, of the combined projectile and added mass system with respect to the plate is therefore
related to ¢ by

{=ye (19)

where y is the shear strain in the effected zone. The displacement for material failure, & 1
is reached at the maximum shear strain of the material, y,, i.e. ¢, = y, e, beyond which no
further resisting forces act on the moving system. The shear strain that was developed in
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the second stage is small and could be neglected. The equation of motion for the third stage
is therefore
d*¢

iy —(;t_z-

=Fy=~4, (20)

where A, = nD, b and D, is the average cavity diameter in the second stage.
Using equation (15) for , equation (20) becomes

Apiu . IDAP

&+ _’?Z;é = - -—;nt 2n
which can be readily solved for & and ¢&.
. —  Tp€ A z
H nmye H
=  Toe€)[mae " A,p To€
§=(V +--)(—~)[1~—ex (——"— )]w—-t. 23
2 PRAPYN p m,e P (23)
where V is the velocity at the end of the second stage. The force during this stage can there-

fore be expressed as

Fy= —»AP(TC + ul}) [exp( — ’i"i t)) . 24

The time duration of the third stage ¢5 is determined by the time required for the dis-
placement ¢ to each ¢;. The corresponding velocity at this time V; is the final velocity of
the projectile V. The force-time relations for this stage can then be determined from the
preceding equations.

The total time for the perforation process is the sum of those of the three stages plus the
time required for the plug to leave the target plate. That is

b—¢&;
Vs

tf:z1+t2+t3+

(25)

It is noted that this time would correspond to that of full ejection of the plug. This would
then be followed by ejection of fragments corresponding to the effective mass added during
stage 1 and then by the projectile itself.

DISCUSSION

The preceding expressions enable the post perforation velocity, force-time history, and
contact time to be calculated for penetration processes that include dishing, plug formation,
and ductile cavity enlargement. The relative importance of the mechanisms considered in
the analysis would be determined by the various physical, mechanical, and geometrical
parameters appearing in the equations. Of these, a few have to be determined empirically,
namely the entrance and exit hole diameter D, and D, and the plug length 4. Values for
the coefficient of viscosity u and the width of the shear zone e can be obtained from the
results of other investigations and modified to suit the particular ballistic test conditions.

The geometrical measurements to be taken on experimental target plates are D;, D; and
b. Fairly good results can be obtained by simply setting D, = D,,, = 3(D; + D;)and setting
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A, = A, for the area corresponding to D,,,. For cases where Dy > D, it would be more
exact to calculate A, on the basis of D,, and to take D, , which is the average diameter of
the plug, to be the linear average of D, and D over the plug distance 5. A large number of
measurements on a variety of perforated plates [10, 15] has shown that the ratios D, /A,
and bjh are essentially constant for a given target plate material and projectile over the
range of velocities of interest. This means that those parameters could be obtained from
relatively few tests and then used in the equations to obtain results for other test conditions.

The viscosity of materials at high shearing rates has been determined by various rapid
loading experiments, e.g. [14, 16, 17]. These results could be used for g in the analysis. The
perforation process itself is a rapid loading experiment so p could be considered an experi-
memtally determined material property within the framework of the analysis. That is, u for
a given plate material could be set so that the computed results would best fit the test
results. In practice, the values of 1 deduced from the ballistic tests and those that had been
obtained from more direct measurements are generally in good agreement [15].

4 400 projectile:022 in. quc‘i bullet
—~ . target: 5O mm.aluminum alloy
SE Vi:400 mfsec
o 3 3gr. sec’
E F_ me=2680 Y 38C
T x >
3 300F
5 s = [}
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J }
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Fig. 2. Calculated example of displacement, velocity, and force histories for the three stages of
perforation.

The width of the shear zone, ¢, could be obtained experimentally by examination of etched
specimens or can be deduced from the analyses of [18, 19]. Again both methods seemed to
be in reasonable agreement. Either could be used since the results are not sensitive to the
exact value of e.

The dependence of the residual velocity on the properties of the projectile and target
plate and on the test conditions appear to be in conformity with general observations on
projectile perforation. A typical set of force-time, velocity-time, and displacement-time
diagrams obtained from the analysis is shown in Fig. 2. This example was calculated for
the case of a 0-22 in. caliber lead bullet perforating a 5-0 mm thick aluminum alloy plate.
The component forces throughout the three stages are shown in Fig. 3 for the same case.
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Fig. 3. Force~time relation for each of the force components for the three stages of perforation
(same conditions as Fig. 2).

The absence of an initial rise time for the force is due to the neglect of the shape of the
nose of the projectile on the rise time of action of the compressive and inertial forces. Those
forces are assumed to act immediately on the full cross section. Consideration of this effect
would have only a very small influence on the overall results. The decay of the total force
during the first stage is due to the decrease of the inertial force. The shear force acting in the
second and third stages is seen to be important and dominant in the last part of the perfora-
tion process. A discontinuity in the force (dotted lines in Figs. 2 and 3) would appear at the
onset of the third stage due to the removal of the inertial force. Force continuity could be
maintained by suitably changing the value of e, the width of the shear zone. Detailed ex-
amination of ejected plugs has indicated that corresponding changes in e do, in fact, take
place during the ejection stage. The alteration of ¢ in the analysis to ensure force continuity
therefore seems to have a physical basis.

A comparison of the predicted force-time relations with those obtained in dynamic
punching experiments, e.g. Fig. 4 from [14], shows reasonable agreement. In those curves,
the time over which the force decreases after the first peak would correspond to stage 1,
i.e. before the onset of plugging.

There are important differences between the force-time histories obtained from the
present analysis and those obtained in [11] on the basis of an assumed deceleration-time
function of the projectile. In [11] the force tends to zero in the last part of the process while
the present results indicate that the final force is still close to its maximum value.

There are experimental indications that the force is large at the last stage of perforation.
This is the observation made in [11] and other ballistic experiments that the velocity drop,
i.e. the difference between initial and final velocities, diminishes for velocities slightly in
excess of the ballistic limit, e.g. Fig. 21 of [11]. This result corresponds to the observation
that a projectile that perforates a plate under conditions slightly exceeding the ballistic limit,
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Fig. 4. Load/Displacement curves for aluminum (from Ref. [14]).

i.e. a higher initial velocity or thinner target plate, would have a relatively high terminal
velocity, e.g. about 20 per cent of the initial value. The impulse associated with the end pro-
cess of perforation is therefore significant. This in turn implies that the force acting during
the end process is high which is in accordance with the results shown in Figs. 2 and 3.
Another consideration is that the time interval for the third stage, t,, is found to be sensitive
near the ballistic limit, and small increases in thickness or decreases of velocity would
increase ¢, by a relatively large amount. This effect and a large terminal force are the
apparent causes of the observations on the velocity drop effect. The predictions of terminal
velocities based on the present analysis [15] do, in fact, show that the velocity drop initially
decreases with increasing initial velocity as indicated in Fig. 21 of [11].

CONCLUSIONS

The analysis of the ballistic perforation problem that has been developed seems capable
of predicting post perforation velocities, contact times, and force-time histories. The analysis
relies on certain geometrical parameters which must be determined empirically at this stage
of development. Certain material properties are not well established and could be deter-
mined by extrapolation of other results or by experimental observations. Both these and
the empirical geometrical parameters could be obtained from a small number of tests. Once
these are determined for a given projectile and target material, predictions can be ob-
tained over a wide range of projectile velocities and target thicknesses. Further development
of the analysis would be to determine the empirical factors by basic considerations
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Pestome — [{1s1 OnUCaHMA MEXaHH3Ma NEpPOPAUMH METAILIMYECKMX MHINCHEH JeTHIINME
TemaMH, paspaboTany MATEMATHHECKYIO Mozens. CuaTaroT, ¥ro npouece nepdopauns pas-
HENAETCH Ha TPH CBS3aHHBIC MEXAY coOoM cramun. AHamu3 yIdThiBaeT 3PHEXTHBHYIO Maccy
MyJiH, JBHATAIOIIYEOCS C HyJell, FOTOBON OTHE/MTLCA OT MaTepHalia MHIICHH, HAedopMausio
Oy BO BpPeMs MPOHHMKHOBEHHS M [IOBBIIAIOLEYIOCH NMPOYHOCTH MATepHana MUILEHH NpH
MOBBIIIEHHBIX CKOPOCTAX HArpPy3oK. AHA/lH3 JaeT BO3MOXHOCTEL CYMTATh OCTATOUHYIO CKO-
POCTh Kak (YHKLHIO TOMUMHE! MHILEHH ¥ €€ MEXAHAYECKHX M QHIMYECKHX CBOMCTB M MACChi,
Y TEOMETPHH H CKOPOCTH YIApa JIETSIIero Tenia, 'eoMeTpust IyCTOTHI, T. €. BXKOAHOK M BHIXOZA-
HO¥ [MAMETPBI TOMILUHL! OYJIH, CYMTAIOTCH IpH aHanm3e GakTopaMs ¥ SBIAIOTCS IMOMPH-
weckumE HapameTpamu. T1o Hacrostell TEOPHH MOXHO TAKKe HpeNCcKasaTs TpaduK CUIlbl IO
BPEMEHH ¥ [JJIHTENILHOCTD KOBTAKTa mephopalmm.



